Small deviations for fractional stable processes

نویسندگان

  • Mikhail Lifshits
  • Thomas Simon
چکیده

Let {Rt, 0 ≤ t ≤ 1} be a symmetric α-stable Riemann-Liouville process with Hurst parameterH > 0. Consider a translation invariant, β-self-similar, and p-pseudo-additive functional semi-norm ||.||. We show that if H > β+1/p and γ = (H − β− 1/p), then lim ε↓0 ε logP [||R|| ≤ ε] = −K ∈ [−∞, 0), with K finite in the Gaussian case α = 2. If α < 2, we prove that K is finite when R is continuous and H > β + 1/p+ 1/α. We also show that under the above assumptions, lim ε↓0 ε log P [||X || ≤ ε] = −K ∈ (−∞, 0), where X is the linear α-stable fractional motion with Hurst parameter H ∈ (0, 1) (if α = 2, then X is the classical fractional Brownian motion). These general results cover many cases previously studied in the literature, and also prove the existence of new small deviation constants, both in Gaussian and Non-Gaussian frameworks. Résumé Soit {Rt, 0 ≤ t ≤ 1} un processus de Riemann-Liouville α-stable symétrique avec paramètre de Hurst H > 0. Considérons une semi-norme fonctionnelle ||.|| invariante par translation, β-autosimilaire et p-pseudo-additive. Nous montrons que si H > β+1/p et γ = (H − β − 1/p) alors lim ε↓0 ε logP [||R|| ≤ ε] = −K ∈ [−∞, 0), avec K finie dans le cas gaussien α = 2. Lorsque α < 2, nous montrons que K est finie quand R est continu et H > β+1/p+1/α. Nous montrons aussi que sous ces hypothèses lim ε↓0 ε log P [||X || ≤ ε] = −K ∈ (−∞, 0), oùX est le mouvement fractionnaire linéaire α-stable avec paramètre de HurstH ∈ (0, 1) (lorsque α = 2, X est le mouvement brownien fractionnaire usuel). Ces résultats généraux recouvrent de nombreux cas précédemment étudiés dans la littérature et prouvent l’existence de nouvelles constantes de petites déviations, aussi bien dans le cadre gaussien que non gaussien.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Poisson Process

For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...

متن کامل

Small Deviations of Stable Processes via Metric Entropy

Let X=(X(t))t ¥ T be a symmetric a-stable, 0 < a < 2, process with paths in the dual Eg of a certain Banach space E. Then there exists a (bounded, linear) operator u from E into some La(S, s) generating X in a canonical way. The aim of this paper is to compare the degree of compactness of u with the small deviation (ball) behavior of f(e)=−log P(||X||E* < e) as eQ 0. In particular, we prove tha...

متن کامل

Small Deviations of Weighted Fractional Processes and Average Non–linear Approximation

We investigate the small deviation problem for weighted fractional Brownian motions in Lq–norm, 1 ≤ q ≤ ∞. Let BH be a fractional Brownian motion with Hurst index 0 < H < 1. If 1/r := H + 1/q, then our main result asserts lim ε→0 ε log P (∥∥∥ρBH∥∥∥ Lq(0,∞) < ε ) = −c(H, q) · ‖ρ‖ Lr(0,∞) , provided the weight function ρ satisfies a condition slightly stronger than the r– integrability. Thus we e...

متن کامل

On the Small Deviation Problem for Some Iterated Processes

We derive general results on the small deviation behavior for some classes of iterated processes. This allows us, in particular, to calculate the rate of the small deviations for n-iterated Brownian motions and, more generally, for the iteration of n fractional Brownian motions. We also give a new and correct proof of some results in [24].

متن کامل

Integer-order Versus Fractional-order Adaptive Fuzzy Control of Electrically Driven Robots with Elastic Joints

Real-time robust adaptive fuzzy fractional-order control of electrically driven flexible-joint robots has been addressed in this paper. Two important practical situations have been considered: the fact that robot actuators have limited voltage, and the fact that current signals are contaminated with noise. Through of a novel voltage-based fractional order control for an integer-order dynamical ...

متن کامل

Large deviations for the local and intersection local times of fractional Brownian motions

Large deviation principle for the non-linear functionals of non-Markovian models is a challenging subject. A class of such models are Gaussian processes. Among them, the fractional Brownian motions are perhaps the most important processes. In this talk, I will talk about some recent progress achieved in the large deviations for local times and intersection local times of fractional Brownian mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003